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We derive the equation for the single-chain correlation function in polymer blends. The chains in the
incompressible blend have a radius of gyration smaller than the radius of gyration for ideal chains. The
chains shrink progressively as we approach the critical temperature T,. The correction responsible for
shrinking is proportional to 1/V'N, where N is the polymerization index. At T=T, and for N=1000,
the size of the chain has been estimated to be 10% smaller than the size of the ideal coil. The estimate
relies on the appropriate cutoff. In the limit of N— co the chains approach the random walk limit. Ad-
ditionally, we propose in this paper a self-consistent determination of the radius of gyration and the
upper wave-vector cutoff. Our model is free from any divergences such as were encountered in the pre-
vious mean-field studies; we make an estimate of the chain size at the true critical temperature and not

the mean-field one.

PACS number(s): 61.41.+e, 64.60.Fr, 64.75.+g, 05.70.Jk

I. INTRODUCTION

In this paper we are mainly concerned with the
behavior of a single chain in the. binary mixture of two
homopolymers. It is a well known fact that in the limit
of N— o (the infinite length of the chain) the self-
interactions of a chain are screened by the presence of
other chains [1,2] and thus the chain adopts the Gaussian
statistics as an ideal coil. Moreover, in this limit the col-
lective structure factor for all the chains can be calculat-
ed from the random phase approximation (RPA) of de
Gennes [3]. And last but not least the coexistence curve
is obtained from the well-known Flory-Huggins free ener-
gy. As has been shown elsewhere the one-loop correc-
tions to the collective structure factor and the Flory-
Huggins expression for the critical temperature of mixing
are of the order of V'N [4]. As has been shown there, the
corrections are still appreciable even for chains as long as
10%I, where I is the monomer size. Moreover, it has been
pointed out that the results of the loop expansion strong-
ly rely on the appropriate choice of the cutoff; in particu-
lar, it was shown that if the real-space cutoff is of the or-
der of I neither RPA nor the Flory-Huggins results would
have been retrieved in the limit of large N. We have been
able to estimate the correct cutoff as roughly proportion-
al to VNI The purpose of this paper is twofold. First
we want to derive the equation for the monomer-
monomer correlation function in the single chain and in
particular, find the radius of gyration for a single coil in a
polymer blend. Secondly we would like to discuss the
problem of the cutoff in polymer physics and propose a
mean for the self-consistent determination of the cutoff in

the theory.
1

Previous studies of the chain statistics in polymer
blends have been done in the Gaussian limit only,
whereas here we present a self-consistent one-loop ap-
proximation scheme. In particular, our results are free
from any spurious divergences encountered in the previ-
ous study [5]. Indeed the singularity at T=T, of the
effective monomer potentials derived in [5,6] can be treat-
ed by an effective renormalized theory [7]. Our method is
very similar to, although not identical to, the one used by
Barrat and Fredrickson [8]; here we will compare the two
methods in terms of the technical details as well as ob-
tained results.

The paper is organized as follows. In Sec. II we
present the basic scheme for the calculations. In Sec. III
we find the approximate equation for the single-chain
correlation function as well as for the collective structure
factor. In this section we also make an analytical esti-
mate of the radius of gyration at infinite temperature and
at the critical temperature. Section IV contains the dis-
cussion of the cutoff in polymer blends and the proposi-
tion for its self-consistent determination. Section V con-
tains the concluding remarks.

II. THE PARTITION FUNCTION
FOR A POLYMER BLEND

We consider a mixture of n, A-type flexible polymers
with N, monomers in each molecule, and ny B-type flex-
ible polymers with Nz monomers in each molecule inside
a volume V. The external field U, couples to only one
chain of 4 monomers. The formula for the partition
function for this system can be conveniently written in
the following form [4,8,9]:

Z[U,1= [D¢, [ Désexp(—H,[$ 4,65] [ DI, [ Digexp if(—z‘%‘l);¢AJA+if(—;~:l);¢BJB
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Here ¢ 4 and ¢ are the Fourier transforms of the local concentrations of 4 and B monomers respectively. H; is the in-
teraction Hamiltonian,

H1= (2 A [3w44l6 4@+ wpp|95(Q) > +w 456 4(Q)b5(—q)] , 2.2)
o;; are the effective interaction parameters and p,, is the total density of monomers The free-energy density for the sys-

tem of n, noninteracting Gaussian chains in the external field Iy F [ »1 (¥ = A4,B), is given in the form of the cu-
mulant expansion [4,9], i.e.,

A(n

(3@ 8,7 @, (—a) T, (—a,) (2.3)

(="  dq o dq,
n! (2m)? (2m)?
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n=1

where the concentration operators ¢ v q) for n,, chains are given by the following formulas:

( 1 ng Ny
$ "‘4 -3 3 exp(qr (2.4)
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and the average { )§ (subscript ¢ stands for cumulants) is taken with respect to the ideal chain statistics which in our
case is taken to be a Gaussian statistic. Here r®) denotes the position vector of the ith monomer in the ath chain. The
free energy of our labeled chain F)[J,+iU ,] is simply given by the above equations with n, set equal to 1 and the
potential equal to J , +iU ,. Finally if we integrate out the fields J ,, J; we find the partition function in the following
form:

Z(U )= [Dé, [Dégexp(—T 4[¥,]1—Tp(¥p]1—H,) , (2.6)

where only I' , [V , ] depends on the external potential U 4. First we find

dq, dq; .
C ¥,]= 2 n'f (2_”)3 f 3F(nA)(Q1'"qn)‘l’A(_%)""l’A(_qn)"f <¢( )QI)>(C)U(‘11)

(2m) (27)3

dq
Xf 2 ;3 f 27 )3< ( )(q1)¢“)(Q2))6UA(q1)UA(q2) . 2.7

Next we find ¥ , expanded up to the second order in the external potential U ,:

(1)(‘11)4’ (CI2)>0UA(‘~12)

‘I/A(ql)=\l’(q1)—

dq
-+ o f(z (348 (@8 (95U 4 (@)U a(as) 28)

Here ¥(q)=¢ A(q)—(qﬁ :‘ (q) Yo, 70, represents the Fourier transform of the deviations of the concentration of 4
monomers from the average concentration. Additionally we shall need the second-order vertex function as a functional
of the external field. It has the following form:

F(ZA)=(S(2A))—1 , (2.9)
S =808 5 @)+ [ = o )3 (89a)8 (a8 P(a:))5U 4 (@)
d Py ~
+1f uq;s J G 8 9@)8 (@208 '4a8 (05U 4 (@)U 4(as) - 210
Finally if we use the incompressibility formula we will find ¥z =—V and I'3[¥3] in the form known from the RPA

[10]. Here we note that Barrat and Fredrickson [8], who used the same type of analysis, have performed this step
differently, namely, they integrated over the monomer concentrations ¢ ,,¢5, whereas we integrated over the coupling
fields J ,,J5. This difference will show up in the approximate equation for the single-chain correlation function.



50 SINGLE-CHAIN STATISTICS AND THE UPPER WAVE-... 2089
III. THE SINGLE-CHAIN CORRELATION FUNCTION
The correlation function for the single chain labeled by the external potential U , is simply given by
~ §Z[U,]
S.44(91,8)=C$1(q))¢'{(q,)) = : (3.1)
44\q q2) (¢A(ql)¢A (q2)) Z[UA ]SUA(ql)SUA(qz)

Now using this equation at U , =0 we find the following approximate equation for the single-chain structure factor in

the incompressible blend:

1

VS44(a,—q)=($ D@ P(—q))o+—
2po

~
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a
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It includes the ideal term and the first nonvanishing
correction to it. Here S,(k)=(W(k)¥(—k))/V is the
collective structure factor for the polymer blend [4] and
34 is given by Egs. (2.9) and (2.10) with U,=0. The
averages with the subscript O are taken over the
configurations of noninteracting system (ideal averages)
whereas those without the subscript are taken over the
configurations of the interacting system. As can be seen
from this equation the upper wave-vector cutoff is crucial
in this equation. Here we simply set it equal to 27/V'N
[4]. Due to the cutoff the ideal term is VN larger than
the correction and thus dominates in the limit N — o0.
Other corrections divided by the ideal term are of the or-
der 1/N and smaller and thus have not been included in
Eq. (3.2). The longer discussion concerning the cutoff is
contained in the following section. The equation for the
single-chain correlation function in Ref. [8] is similar in
structure to Eq. (3.2), only instead of having
LyP(k)r$4(k)S, (k) one has (J,(k)J,(—k)). The
latter is exactly equal to x(1+2yS.(k))/2, where the
Flory-Huggins parameter y=w 45 —(w , +wpp)/2 and
this form has been used in Ref. [8]. Note that if we use
the linear approximate relation between J, and ¥ ,, i.e.,
J =T , we would get the same result from both ap-
proaches as evident from the form of Eq. (3.2). This
equation for the single-chain correlation function should
be supplemented by the self-consistent equations for the
collective structure factor, S_.(k) [4]. Since we are only
interested in the first-order corrections to the Gaussian
structure factor for a single chain we shall not use them
here; instead we will make some simple approximation to
S,.
The radius of gyration [11]

1 NA N,
R2= T <2 p> (rsl)_ry))z) (3.3)
4 \i=1 =

is obtained from Eq. (3.2) by differentiating both sides
twice with respect to g and taking the limit of g—0. We
find (compare with the Appendix)

(3.2)

|
2N%R?/3=2N%R3%/3
1 dk

2p0 Y (2m)}

£ (K)TA(k)S, (k) ,

(3.4)

where R3=N ,12/6 is the radius of gyration for the ideal
chain [Eq. (3.3) with the ideal average] and f (k) is explic-
itly given in the Appendix. Since f (k) is always positive
we find the first intuitively obvious result that chains in a
blend shrink. Additionally it is also clear that chains
shrink progressively as we lower the temperature. Now
we can estimate how much they shrink at the infinite
temperature and at the critical temperature. For simpli-
city we shall take the symmetric case (N =N ,=Np,
¢=n,N,/(n4N,+npNp)=1) and we will be interest-
ed in the first-order correction to the Gaussian result.
For all temperatures we can use the following approxima-
tion [11]:

232
Tt =2+ £

(3.5)

At the infinite temperature we can simply set S, =2/I'}%
while at the critical temperature we can approximate
S.(k) by 3/(k%I%). These two approximations are in ac-
cordance with the self-consistent loop equations for S,
[4]. Now at T = o0 we have

1.6
R =R} |1———= (3.6)
° pol*V'N
while at the critical temperature T =T,:
2.7
R*=R}|1——F—F— (3.7)
° pol*V'N

The role of the cutoff is clear here. If not for the V'N in
the upper wave-vector cutoff the correction to the Gauss-
ian radii of gyration would be nonzero even in the limit of
N — o and thus RPA would not be a correct description
in this limit. It is interesting to note here that 1/V'N
corrections are also obtained for the polymer chain im-
mersed in a good solvent [12].
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IV. THE UPPER WAVE-VECTOR CUTOFF

As we have seen in the previous section the fluctuation
corrections to the radius of gyration strongly depend on
the upper wave-vector cutoff. Although it is ubiquitous
in statistical mechanics there are no ready recipes for the
choice of the cutoff. In low molecular mass liquids we
usually have one natural length scale, which corresponds
to the size of a molecule and the cutoff is usually made
proportional to this length scale. In the polymer mix-
tures the problem is more complicated since we have
three different length scales: the total length of a poly-
mer molecule, NI, the size of the region occupied by a po-
lymer molecule (proportional to the radius of gyration),
~V'NI, and finally, the microscopic length scale /, which
is determined by the size of a single monomer. We be-
lieve that A should be proportional to the radius of gyra-
tion, that is to V'N. Here we repeat the same arguments
as given elsewhere [4]. At high temperatures, where the
interactions between the monomers are irrelevant, the
monomer-monomer correlation function decays exponen-
tially with the characteristic correlation length which is
proportional to the radius of gyration. Moreover, in all
our calculations the specific structure of monomers has
not been taken into account. The microscopic length
scale is irrelevant here. Finally, if we chose the micro-
scopic length scale as the cutoff the fluctuation correc-
tions would survive in the limit of N— « and thus the
RPA would not be the correct description in this limit.
We believe this is not the case. We note that since the
size of the polymer molecule in the blend is roughly pro-
portional to \/ﬁ, this choice is also in accordance with
the prescription known from low molecular mass systems
where the cutoff is made proportional to the size of a
molecule. Since in the polymer system this size changes
with temperature and concentration, it would be desir-
able here to determine it self-consistently from the
theory. The equation for the radius of gyration R [Eq.
(3.4)] offers a simple way for the self-consistent deter-
mination of the cutoff if we set it equal to 27C /R where
C is some numeric constant. Thus apart from this con-
stant the cutoff would be determined from the theory. In
this way the equation for the collective structure factor
S, [Eq. (3.12) in Ref. [4]] and the single-chain structure
factor S,, would be mutually coupled via the self-
consistently determined radius of gyration and the cutoff.
This prescription is good for the symmetric mixture. In
the case of asymetric mixture we postulate that the cutoff
should be equal to 27 /[A(R 4,Rp)], where A is the sym-
metric function of the two radii of gyrations for 4 and B

chains. Finally, we assume the scaling form for A:
AR 4,Rp)=R ,f(x), 4.1

where x =R /R ,. From the symmetry properties of A,
we have the following equation for f(x):

1 .2)

Lex)=r
X

The general solution of this functional equation is
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1/2

3
”—"+c2x

fx)=|C,; 1o x

(4.3)

Here C; and C, are two constants which depend on the
microscopic details of the system. We cannot determine
them from the present theory, thus in the interpretation
of experimental results, they should be the fitting parame-
ters.

From our self-consistent prescription for the cutoff and
Eq. (3.4) for the radius of gyration we see that both quan-
tities are always positive, the property which was not
guaranteed by the perturbative expansion.

V. DISCUSSION

One of the goals of this paper was to compare our
method with the generalization of the Edwards method
[1,13] applied to dense polymer system by Barrat and
Fredrickson [8]. Close to the critical temperature we ob-
tain qualitatively the same results as one would get from
their method, namely, that the chains shrink. At a high
temperature Barrat and Fredrickson obtain the intuitive-
ly correct result, i.e., that chains approach the Gaussian
limit (expansion of the chains above the Gaussian limit
would be expected only if the system was not incompres-
sible [14]), while we find an unphysical result that the ra-
dius of gyration is smaller than the Gaussian radius of
gyration. We believe that our unphysical result comes
from the usage of the Landau expansion far away from
the critical point, where it is not supposed to work.

As far as the technical details are concerned both
methods are almost the same except for the order of in-
tegration and further treatment of the field-field correla-
tion function (J ,J,). We use the natural order of in-
tegrations, first with respect to the field J,, J; and next
with respect to the order parameter, whereas in Ref. [8]
the order of integrations is inverted. Although it is easier
to integrate out the order parameter first the question
arises whether the change of the order in which the in-
tegrals are performed is a correct step. Moreover in-
tegrating over the concentrations is not particularly easy
in the incompressible system since then the concentration
fields are constrained as follows ¢ ,(q)+¢5(q)=0. Bar-
rat and Fredrickson integrate without imposing this con-
dition; instead they use the artificial potential ¥
(wyp=Vo+x, wy=wgg=V,) between monomers
which in the limit V,— o imposes incompressibility,
once again there is an interchange of the limit Vj;— o
and the integration. The limit V;— o has been investi-
gated in detail in Ref. [6]. The physical meaning of ¥, is
indeed the inverse of the vacancy concentration. In the
limit of vanishing vacancy concentration ¥, tends to
infinity and the results can be interpolated to the case of
the original incompressibility condition when the total
fluctuation of the concentration field vanishes. It can be
easily seen that in the case of the Gaussian approxima-
tion the interchange of the order of integrations and
Vo—  does not change the results at all. Beyond the
Gaussian limit these details change the results and matter
significantly, as we have shown in this paper. Finally we
note that in order to integrate over the concentration
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fields one must invert the matrix w;;. For purely attrac-
tive van der Waals interactions (with the same ionization
potential for A and B monomers) the matrix has a van-
ishing determinant [see Egs. (1)-(3) in Ref. [15]] and thus
cannot be inverted.

Summarizing, both methods give the same qualitative
results near the phase transition in polymer blends, but
the Edwards method generalized by Barrat and Fredrick-
son rests on a number of assumptions which might not be
correct. At the same time it gives a reasonable result at
high temperature, while our method does not. Which of
the two approaches is a better one for polymer systems
should be a matter of meticulous study which we hope to
perform in the future.

Last but not least we have postulated in this paper the
way of determining the upper wave vector cutoff in the
theory of polymers. As discussed here the dependence of
the cutoff on N is crucial for the theory of polymer
blends. It is also clear that in Ref. [8] the cutoff is intro-
duced indirectly via the approximate treatment of the in-
tegrals involving k2T,(g,k) [e.g., Eqs. (10) and (12) in
Ref. [8]], where it is approximated by (g*)’T'y(¢*,q*).
Since ¢*~1/R,, this approximation is similar to the in-
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troduction of the cutoff roughly at 1/R,, as proposed
here. Without this approximation the integrals would be
ultraviolet divergent. Even if we set the cutoff there at
the microscopic scale the corrections would be large and
independent of N. In particular we would not retrieve in
this case the Leibler results [10] in the limit of large N.
Thus we may also conclude that the cutoff of 1/R, is
necessary in the case of diblock copolymers and in gen-
eral in all polymer mixtures including copolymers as well.
The usefulness of our prescription for these different sys-
tems will be a matter of our future study.
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APPENDIX

Here we shall follow the equations given in Ref. [8]. For the fourth-order correlation function we have

($ D@ P(—q)d Pk) ' (—k))y=8g,(¢,0,k)+2[g,(g,q+k,q)+g,(g,q—k,q)+g,(k,q+k,k)+g,(k,q—k, k)]

+4[g,(q,q+k,k)+g,(g,q—k,k)] . (A1)

Here

£1091,92,43)= x11::x3 xl(xl——gx(:)tjcl—xﬂ xz(xz—gx(:)iiz—xl) x3(x3—gx(:)ijc3—x1) ’ (A2
where x; =q212/6 and g (x)=[exp(—xN ,)—1]/x. For the two-point correlation function we find

(3 P(@FP(—@))o=2N,+g(x)/x , (A3)
and x =¢?%1%/6.

In order to obtain the radius of gyration one has to differentiate
h(k,@)={$P(@) P~ )P LK) P (—k))—($'(@d P(—a))o{ Pk P(—K)), (A4)

twice with respect to g and finally take the limit of ¢ —O0 [see Eq. (3.2)]. The MATHEMATICA software package comes in

handy at this point. We find

h"(k,0)=f(k)=4N3cos’6[ — 120+ 120 exp(y) — 96y —24 exp(y)y —24y%— 12 exp(y)y?

+4exp(yly*+y*1/[3expyly°®],

(AS)

where y =N ,k2I?/6 and @ is the angle between the q and k vector. This formula is used in Sec. III for the computa-

tion of the radius of gyration.
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